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ABSTRACT

Cole and Huth [1] have studied the effect of a line

load moving with constant velocity V along the surface of

an elastic half-space. The present paper treats the equiva-

lent problem for a viscoelastic (standard solid) material

when the velocity V is less than the velocity cs of

shear waves of high frequencies (Q -> c).

In Reference [l]no solution could be obtained when the

velocity V was equal to the velocity of Rayleigh waves.

The present analysis yields a solution for this special ve-

locity. It also permits an evaluation of the effects of

viscosity at other values of V . In certain ranges these

effects are minor, but in other ranges major differences oc-

cur due to focusing phenomena.
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PARTIAL LIST OF SYMBOLS

c, c * Velocities of shear waves in the limits 2sJ

and 9 -- 0 , respectively

c c* Velocities of dilatational waves in the limits
p P

and 0 -> 0 , respectively

x _t2

Erf(x) = f e dt , the error function

0

Erfc(x) = fe dt , the complementary error function

x

k Bulk modulus

c2

K = Ratio of wave speeds in the limit 9P
p

V-I Dilational Mach number in the limit S
ML c

p

M - V -Shear Mach number in the limit 0

T c

m Ratio of relaxed to unrelaxed shear modulus

n = 1 - K(l - m)
3

P Load per unit length

T Relaxation time

t Time

ui3 u, w Components of displacement

V Velocity of the moving load
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PARTIAL LIST OF SYMBOLS O-ONT'D)

x, y1 z Fixed coordinates

x, y, z Moving coordinates

_z

VT Dimensionless moving coordinate

Shear modulus in the limit 2

- VT Dimensionless moving coordinate

p Density

a., Stress components

(Irrotational potential function

Ti , Components of equivoluminal vector potential

function

wTransform parameter
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THE EFFECT OF A MOVING LOAD ON A VISCOELASTIC HALF-SPACE

I. Introduction

The response of an elastic half-space due to loads moving

on the surface has been considered by Sneddon [1, 2, 3] who

obtained formal solutions for general loads, and closed solu-

tions for certain specific cases. Subsequently, Cole and

Huth [4] obtained by other methods closed form solutions for

the plane problem of a line load progressing with constant

velocity on the surface of the half-space. Miles [51 has con-

sidered the case of loads with axially symmetric distributions

acting over a circular area, the radius of which expands with

velocity V, Figure 1. He has demonstrated that the two-dimen-

sional Cole and Huth problem, with an exception, is identical

with an asymptotic solution of the three dimensional problem

valid in the vicinity of the load front 15]. This confirms

the intuitive conclusion that plane steady-state solutions,

which are relatively easy to obtain, can be used (with limi-

tations) as approximations in three dimensional situations

such as that shown in Figure 1.

The results of [4] indicate that the character of the

solution depends on the relative values of the velocity V

and of the velocities of dilatational and shear waves in the

medium, cp and cs1 respectively. The three resulting

cases were designated in [4] as subsonic, trans-sonic and
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supersonic. Subsequently, it was noted in [5] that the steady-

state solution of [4] breaks down if V = CR, the velocity

of Rayleigh waves, such that in this exceptional case the three

dimensional problem cannot be approximated by the plane solu-

tion.

Lorsch and Freudenthal [6] have considered a related

problem, the quasi-static problem of a line load moving with

constant velocity on the surface of a viscoelastic (Maxwell

solid) half-space.

The plane steady-state problem of a line load progressing

with constant velocity V on the surface of a viscoelastic

(standard solid) half-space has been treated by Sackman [71,

but only for the supersonic case, i.e., when V is larger

than all wave velocities in the medium. In the present paper,

an alternative case will be considered where V is smaller

than the limiting velocity c s of waves of high (lim 2 co

frequencies.

In a standard solid the wave velocities decrease with

decreasing frequency 2, the limiting velocities for 2 -> 0

being c* < cCp cs. The present case will therefore in-

clude subcases depending on the value of V relative to c*

and c*. The solutions obtained permit an insight into the
p

deviations between the response in elastic and viscoelastic

situations in general; further, a solution is presented for

the special case, V = cR, where no steady state solution

for the elastic half-space exists.
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A formal solution of the problem will be obtained by in-

tegral transform methods. Due to the complexities introduced

by the viscoelastic behavior, closed solutions, do, in general,

not exist, and recourse will be taken to asymptotic methods

of evaluation. The quantities of interest, the stresses and

accelerations, will be obtained. Additional quantities, such

as velocities or displacements, could be obtained if desired,

except for a free and undeterminable constant in the displace-

ments. The indeterminacy of the displacements is not unex-

pected; it already exists in the two-dimensional elastic prob-

lem [4], and even in the equivalent static one [8]. (The mat-

ter is discussed in [5].)

-3-



II. Formulation of the Problem

Let x, y, z designate a stationary coordinate system

in the half-space z > 0, Fig. 2. A line load P of unit

intensity, positive if downward, moving in the negative x -

direction with uniform velocity V, may be described by

P(X, t) = 6(x + Vt) (i)

where the symbol 6 indicates Dirac's function. The equa-

tions of motion are

°ij j = Pu' (2)

The stress-displacement relation for a homogeneous iso-

tropic material, elastic in bulk, and viscoelastic in shear is

= (k u -2 6 . + WLui j + u i) (3)

where k is the elastic bulk modulus. For the standard solid

i is the operator

m + T
m+--T - 4
1+ T Tt

In this relation p. is the "unrelaxed" and m4 the "relaxed"

shear modulus, while T is the relaxation time, (See Ref. 9).

The displacements may be written according to the Helm-

holtz resolution,

u D, i+ E tTtj(5)

as functions of the potentials 0 and T.. In the present
-4



problem, the material is in a state of plane strain, u = 0,

and Eq. (5) reduces to

u - u - -u,

1 X Z
(6)

u w = (,- + 3!,-
3 z

where ( = O(X, Z), T =! =0 , and T 23!(£, T ).1 3 2

Using Eqs. (3), (4) and (6), the equation of motion (2)

becomes

('{, + ',_ ) = P "

The purpose of the paper being the determination of a

steady state solution, consider a second coordinate system,

Fig. 2, moving with the load, and related to the stationary

coordinate system by the Galilean transformation:

x =x + Vt

y= y
(8)

t t

The steady state solution must satisfy the partial differen-

tial equations in x and z,

+ m + VT C~( ) (' xx + (D ) = 9v20'3 1 + VT a zz xx

(9)

+ VT x
Cx(3!, + T ,) = pV23!,'

1+ VT x )Zx

with boundary conditions

-5-



L -z=O

(io)

and the provision that

0.-~ a s z- ()

The problem to be solved is now specified by Eqs.(9),

(10) and (11).



III. Formal Solution

The solution of Eqs. (9), (10) and (ii) may be obtained

formally by the use of an integral transform technique. The

steady state disturbance from loads moving with a velocity

V < cs  is expected to rxtend to infinity in both directions

such that the Fourier transform is appropriate.

The Fourier integral relations

00

F(w) f F( )e d (12)

-00

-i
F(1) f F (w) e d (13)

-00

apply provided F(x) satisfies certain conditions [10, 11].

As a first step the Fourier transforms for the stresses

and accelerations will be obtained.
_x z

Introducing dimensionless coordinates - V r -

Eqs. (9) give:

j _ 2(lMe l-iU)T =o
(D , T-TM L n - iow

(1k)

- _ 2 2i 1 -i ) =

while Eqs. (10) give:
_W2 2mi 0= V-( - 2 m-i) l (w, 0) - 2iw (ml-D ( 0) = VT

(15)
-2iCw $, (D , 0)- C

2 (2 - 2-i -'iw)T(D, 0) = 0
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V2 V
where the following abbreviations are used: - _ ,MTC21

P p

c 2 = k + 3 c 2 ,c 2 = /p, and n = 1 - 4/3K(l-m)p p K s 's

The symbols c and c5  indicate the velocities of irrota-ps

tional and equivoluminal waves, respectively, in the limit of

infinite frequency, 0 4 c. In addition, Eq. (11) requires

that

0,T are to remain finite as 1 .O (16)

The solutions of Eqs. (14) are

L n-iW ~ C 1- M2 l-icD
y V 1- ML nl-i - i- L n-i

S=Ae +A e
12

(17)

lq _21iW DJ 1_ 2 l-iCDV M miw M m- ic

=B e +Be
1 2

To make the quantities w 1- M2 l-i and 2 i
L n-iw and m 7a

single valued, branch cuts and argument restrictions are made

below. Further analysis requires separate consideration of

three cases, depending on the value of the velocity V. De-

noting the velocities of irrotational and equivoluminal waves

in the limit n -> 0 by c* = fnc and c* =f mc the fol-
p p s s

lowing three possibilities must be considered separately.

Case a: V Kc*s

Case b: c* < V /K c*
s p

Case c: c* / V < c
p s

-8-



Case a

If the branch cuts shown in Fig. 3 are used with the ar-

gument restrictions

- 7- <_ arg (lM2 1-j) <  (a)

(18)

-7 < arg(l- 2 M ) < 7T (b)- M~L n-i[w

then

+ 11W PL

- VT_ VT (2 - M)

(19)

+ VT 2iLe

where the upper signs are to be used for R(w) < 0, the lower

signs for R(m) > 0, and the following abbreviations are

employed:

- m-iw
Q 1-iW

F2 -2 2 l-iW

L = - M = - L n-iD
(20)

-2 -2 2_2_-i
T T M m-il

" (2 _ - 4

The exponents thus chosen have negative real parts in the range

of w where they are to be used.

Substitution of Eq. (5) into Eq. (3) makes it evident that

the stresses may be written

-9-



CY i (21)

where o, is the portion derived from D and aTj. the

portion derived from T. The accelerations may be written in

a similar fashion.

The transforms of the stresses are then

-2 _ 2 2 + T'
-(2+M -2ML)(2 - M)

- L exx VT

4FLT± T~wFT
C- e

YYX VT

yyy 0 (22)
(2(2 -)2 L

CT- e

zz¢ T
VTA

CT (22)

2i L (2 -) L
S+- exz 0 VT

-2iFL(2 - 2) ±T1CDFL
axz +T eL M

TZ VT A

The transforms of the accelerations are

-i0-



iW(2 - ±T) -i)L
e

= -e

LT2A Q

u--2iwLFT ± +  TT

(23)

WFL (2 - i) ± W

LT27A Q

T' - PL 2A

w. _ - e
2  e

Case b

If the branch cuts shown in Fig. )4- are used with the

argument restrictions (18b) and

O arg(l- m-i " K 2m (24)

then + L

VT (2 - MT)e

2 (2- 4)2 + 4 4LPT

(25)

+ VT 
2 iFLe

2-2 2Lw 2Q ( 2 - MT ) "+ 4P LPT

Again, the upper signs apply for R(n) < 0, the lower signs

for R(w) > 0 and the exponents have negative real parts.

Using the definition (21) and

= (2 - M 2 )2 + 4PT (26)
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the transforms of the stresses are

(2 + MT - 2ML)(2- M )L
xx ( VT T

+

- - LFT YjWFT
S= + - e
xx T VTA:;

- (-2 _ 2)( -2 ±

YY0 VTA -

a 0YY
(27)

-(2 _ M)±' La - e
zzc7  VTA;

aT
zz

a =+ e
xz - VTA -

a +

xz vxy V

The transforms of the accelerations are

-12-



- iw(2 _ M) q TLL
T

4~T 2E Q

u- + - e
.T 2 A- Q

(28)

wL(2 - -2) + TIWPL

L

w =D + p2A Q e

v.w -- 2 L  UT

w,2 T e
tT2 A-T

Case c

If the branch cuts shown in Fig. 5 are used with the

argument restriction (24) and a similar restriction for F2

then

VT(2 -3j) T1W' J

(29)

VT2 ipL " T

where the real parts of the exponents are again negative.

The transforms of the stresses are

-13-



= (2+ 2M) (2 T'U)xx e
VT A

XT V77A

(32 - r)(2 -)

yyy

(2 - 2 ) 2  L (30)
a -e

zz®

a 2i L (2 - -T) e T,

VT

a2iF LL(2 -M T~
xz _ eT VT e

The transforms of the accelerations are

-1 I-



iw(2 _ i2i~ ~

S LT)
(D T2 A eQ

2L T'UP

liT 2 A Q



IV. Asymptotic Approximations for Large Values of T1

According to Eqs. (13), (19), (25) and (29), the stresses

and accelerations are, in general, given formally by expres-

sions of the form

I f g_(w)e dw + f g+(w)e d (32)

-00 0

Since the exponents have been chosen with negative real parts

and the functions g(n) are finite along the real axis with

the exception of the point IJl = - when V = cR , and of

the point w = 0 when V assumes the special value c* dis-
R

cussed following Eqs. (39), the integrals of Eq. (32) are of

a class for which asymptotic approximations may be obtained

for either large (TI - -) or small (-, ->0) values of 'r As

a result of the integrability of the functions g(w) the

major contribution to the integrals (32) for large values of

comes from the vicinity of the origin, and Laplace's method

as demonstrated in Ref. [12] is applicable.

Case a

In this case the contributions from both potentials are

of the general form (32), I = I + I . Consider the typical
1 2

contribution from the equivoluminal potential . In this

case

h_(wD) -~-i.~= (33) M2( -n

_T Ti T 2m* i) + 0(11) (33)
T

-16-



and

-*2/ 
-

h+(n) =-T- i =-(T- i) + MTm iw + 0((2 ).(3)
h+()=_T TI T 2 mP*- T 1

Following the procedure outlined in [12] using only the

first term of the expressions (33) and (34) one finds for

V / c R
R

o Tcoh_ (c ) N (_1) nniA

g_()e dc -E n- (35)1 -f n=0 (,qp _ i )n+i

where

g_(w)e r. A n w (36)
n=O

Similarly,

0h+ ( ) N n!B

I2 1 g+()e dw - r !Bn (37)
0 n=O (ri + iT )

where

n
g+(cD)e = B n w (38)

n=O

Substitution of the appropriate expansion coefficients

An  and Bn  into Eqs. (35) and (37) leads to expressions for

the stresses and accelerations. Retaining only the leading

non-vanishing coefficient, An  or Bn , respectively, one

obtains for V X c*
R

-17-



aY [ * 2M2 2 q 2 ) (2 -M 2 ) x2  - z*

azz[-2 T22 x x~2 2  + 2  -+ xZ+]2

2xx ~-r ) T.__+_P(3

; ( (x2 + z) ~ x

y (2 - *2) x2 + z p,2z

C. L - [- 2- ;
2 ) x2 +X2 + 2z2 - 4 ,*2 X2 + .2 z 2 ) 2

z A mTT

2 (2 (22) 2  x( 3

xz ~r F iv 2 + -:Z + P*

Th2 _ voi c2 xz 2 * 2 xz to7T~ M- - ) x + P*,2z2e)?- (x e + P*;:z 2)e

2#L T x ._

v~~p* (X 2 * ) (x 2 - *2 z 2)
w2 Lx . (2_ _ -* 2 T2 2 2

theRayg v cTy f n L m ateria T th

where

L n ' - m L M L

and

A* =(2 - T )L _4L T

The velocity c* defined by A* = 0 corresponds to

the Rayleigh velocity for an elastic material having the

properties of the relaxed viscoelastic material. When

V = c* the expansions (36) and (38) must be replaced by
R

rlw[h_(w)-h_(O)] A

g_(m)e-- + B An W (40)
n=0

-18-



and

h+((w+(0W]+ B Bnw n  (41)n=0

respectively. The expressions resulting from the terms other

than A and B were previously obtained. Only the in--1 -i

tegrals

0 (-q*-ie )W oTP i
1 e  d+ J e d (42)

- 0

and

= - e )ie wd- f (eT' - e e Cim
4

00 0

(43)

need be considered.

By combining the two integrals in I one finds
3

= 2i e sin dw = 2 i tan
-  (44)

0

In a similar manner one finds

-2 f (e - e Cos W dw = -log e2 2P 2 T  (45)

Substitution of the appropriate coefficients A or Bn n

into Eqs. (35), (37), (44) and (45) leads to expressions for

-19-



the stresses and accelerations. Retaining only the leading

non-vanishing coefficient, A or B , respectively, onen n

obtains for V = cR

(2 - m*2)rx
-1 VTAR 2+ 2 - )tan-l z (2- )tan--

(2 - 2j2 )(2 - Y)
a _ ~ tan -1
yy 27rV* tan-

R L

(2 - 2)2 rt x TZ_

z - 2 VT an-' x- tan-'
RL LTL

(46)
P*2- M42) x 2 + P*2z2

OXZ 2T*VTA log X2 TT Ze

z *2 __

27rmLTA~ R'2 x 2 + PL 2 zr - 2P T*2 + z

2rxTA R(2 - -) x2 + - 2 +T

where

2
2 = 4 F L M; =* 2 -* M 2'Mt n ' m L Mt T '*

and

A* 1 m- m (2 - 2) * #L T*2 n + M Tl

-20-



The result (46) differs from Eqs. (39) in two major re-
1

spects. In the latter, stress and acceleration decay as -L

1 2 2 Z2
and r respectively, where r= + , while if

r

V = cR , the stresses do not decay at all with respect to r
1

and the accelerations decay as r The situation is some-r

what comparable to the resonance of a damped oscillator.

The second significant difference between Eqs. (46) and

(39) concerrs a matter of symmetry. Quantities a and

ui which were, respectively, symmetric and antisymmetric

with respect to x when V c* , Eq. (39), are antisymmet-

ric and symmetric, respectively, when V = c*

It is noted that there is no sudden change in behavior

concerning decay and symmetry depending on whether V = c*
R

or V cR  but there is a gradual transition. This transi-

tion in the vicinity of V = c* is not contained in the
R

present results. It would require retention of more than

the first significant term in the asymptotic expansion.

Case b

In this case the exponent of the irrotational potential

0 is identical with that for Case a. Therefore, Eqs. (35)

and (37) are used again to obtain the irrotational contribu-

tions to the stresses and accelerations. The exponent of

the equivoluminal potential T is, however,

h (w) h h(0-) ( = 3T - i _

- i(m - _T_ 0 2( (W) 2 .  (47)
- i1 2-m*T

-21-



Since the first term of this expression is purely imagi-

nary, the second term must be retained in order to employ

Laplace's method. In Eq. (32) let

0 T]eh (w ) 0 qwh(w)

I= f g_(w)e dw + f g+(w)e d (48)
00 0

and one findsF- (r m- -- 2

I - exp 1-m

0 CO (_,)n *2 im (TI - 2

>+ uj A expL w T d (49)

-'F 2 -L M

where the An  are defined in Eq. (36).

Retaining only the first non-vanishing coefficient A
n

one finds _ (* )21
A0 expL 2 M 2 '--'TJ Erci(r mT -

r~2 QM1- M ~ * -n(0

T Ful-mi(,m
Ec T( 50)

qM* 2 -m V2 T,2lm

provided A 0 , while

I A +5 9 M*2 1-M
m T

+ ip - exp 2 Erfc i. .. (51)2 I -12m-e 1-m ]
2 2 ] r 2 T i 2rMT*2 l-m

TJ L 2 mr"- Tr
if A O = 0, A1 #0

-22-



In a similar manner one finds

() - )2
B O exp M a1

0 *21-I) mmT- i(hm* -

/ Erfc - - (52)mm *2 1- M

T nT

provided B 0 0 , while

I -B + 
(1 

+Tim M2 ___ (53)

- - )21
+ Texp T - Erfc - -- - C

1m2 2 2 1-M -1-M

if B 0 , B 001

Substitution of the appropriate expansion coefficients

An  and Bn  into Eqs. (35), (37), (50), (51), (52) and (53)

leads to expressions for the stresses and accelerations.

The leading terms of these expressions (except for a yy) are

of the type

c zc (x-)2z) - i Zi) (x-m2
z

e or - z e Erfc []

where q is a positive constant. All other terms contain,

with or without the exponential factor, higher negative

powers of z such that the response is only of consequence

-23-



for ratios 2E near m* To obtain this significant partzT
of the response it is therefore sufficient to use expressions

valid in the vicinity of x- = n4 . At other locations the
stresses and accelerations may be deemed to vanish in first
approximation. Thus, retaining only the leading non-vanishing

coefficient, An  or Bn , respectively, one finds

x - M-Z)2 1
exp T n*

Is . 1 M2 2zVT T mmI i(x - mmZ

xx 7( *A L)q -

-+ *1-inZVTM 2mm L 
zVTVT 

TM

bVx 11
2zVM L 2zV MM*I~j1

2p*(M*2 -2M;,~2)(2 - M a2) [(2 - )2 - 2mi*PX

+L
L ( - z) 

2

(2-M2zvTM

~In~ (x - mz)V V Vexp [2zVTM -

L i(x - Tz

r m VJ + (2 - Erf ..TM*.2 1-M

1-2.

TT 
m



where

~MT
2* 

M
2  *2 

2 M*T
-n mm -1,

_ 2 M;~2)2 _ i21nTp , A*~ W 2 2)2+

and the contributions of the irrotational potential ( have

been neglected in all expressions except those for aoYY

Case c

In this case, since h_() = h+(a) and g_(W) =g+(U),

Eq. (32) may be written in the form

I= f g(w)e d (55)

-0

Since the exponents are of the form of Eq. (47), the second

terms of their expansions must be retained. Thus

I ~f r Ann exp ( - ,) - d2w4e l d]0 (56)
n=O n

where the An  are defined in Eq. (36).

If the order of summation and integration are inter-

changed, each term is recognized as a Fourier transform

whose inverse may be taken from the tables [13]. Therefore,

one finds for the nth term

,17A n I q )l ...

I= n n - exp.. 2 M m (57)

1-m 5

-25-



Substitution of the appropriate expansion coefficients

An  into Eq. (57) leads to expressions for the stresses and

accelerations. The leading term in these expressions is of

the type

-q (x - m*z)2  (x - m*z)2

e or c ( e
z2

where q is a positive constant. All other terms contain

higher negative powers of z and an exponential factor of

the above type such that the response is only of consequence

for ratios 2i near m* or m* To obtain the significantz L

part of the response it is therefore sufficient to retain
only the first non-vanishing coefficient A . At other lo-

n

cations the response may be deemed to vanish in first approx-

imation. The expressions for the stresses and accelerations

thus found for i z m* arez M

a (2 + M4w2 - 2 * )(2 - * 2 ) [ (xmz)
Cxx -~V* 1-rn exp~ 2 Tm*2 1 ~n

2A* ZVTMLJ' 2nm TM jnmJ

x z~2  
-2

yy (2 + M - 2ML ) cxx

(58)
(2 - MT2 )

azz (2 + M T
2 - 2b)x

2%
cxz M - 2 xx
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-(2 _M*2) ,-V (x-rr~z) ex _ (x ) ~z21

~rn~ii(58)
cont'd.

and for XZ rn*
z T

T2rnm x 2zVTM*21ffl]
A*/Z7TVTM Trr

ar - 0yy

aY - -aCzz xx

(2 rn ) -

T

rn*r* "/V- (x - ;~Z) X/ T* )

- TL ~ ~ I expr- -~)

wee 2m**rnkT 2A* .177m*2 - 2z'TM* 2 1-r (59

L T] r ~ T nun

TL
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V. Asymptotic Approximations for Small Values of rj and

For small values of i and the asymptotic evaluation

gives in first approximation the rather obvious result that

the stresses are equal to those in an elastic medium having

the properties of the unrelaxed viscoelastic material. There-

fore, no further analysis will be required except for the spe-

cial situation V = c , the Rayleigh velocity defined by

A = (2_M2~)2 - 4L

In the special situation V = cR the functions h(w) and

g(w) exp[Tyw(h(w) - h(0))] are expanded in powers of 1 with

the result:

h_ () = - T + 0(l)T W]

h +(W) P T-ii + 0(l)

!h_ (w)-h_(0)] 0 (60)

g_(w) e = A w 2 + A w + A0 + ZA-n-"
2 1 o n=l

r]w[h+(w)-h+(0) 00

g+(w) e = B 2C + B wo + B + Z B -n
2 1 0 n=l -n

The value of the integrals, in this case, is principally

due to the contribution from large values of T, such that

-N h_ ()h+(c)

7 -N hja + gJ(a)e dw (61)

-00 N

where N is a large but finite constant. Using the trans-

-28-



formation rjw = s and retaining only the leading non-vanish-

ing coefficient An or Bn of the appropriate power series

expansion one obtains

-TI

I A ds (62)
7 1 A 2

provided A 2 0, while

-r(N - i -)sA r ds (63)
7 I2 J Ae

if A 0, A # 0.2 3.

For small values of -q the limit -rqN may be replaced

by zero. This leads to the result

2A2  (64)

if A #0, or2

.- (65)S (n T -i)

if A 0, A 0.

The error introduced by changing the upper limit of in-
tegration is NM where M is the maximum value of the func-
tion g(cw) exp(-qw[h_(w)-h_(0)]) in the.interval 0 > w N.
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This error can be made as small as desired relative to the

value of I by selecting sufficiently small values of
7

and q.

The integral I may be treated in a similar manner with
s

the result

2B 2i (66)
( (P + i ) 3

provided B 0, or
2

8 (67)

if B 0, B 0.
2 1

Substitution of the appropriate expansion coefficients

A and Bn  into Eqs. (64), (65), (66) and (67) leads to

expressions for the stresses and accelerations. Retaining

only the leading non-vanishing coefficient one obtains

xx AR L ( 22M2)(2- )(+ L2Z2) T (x2+ P 2z2)2]

VT 2M) - (x2 + zTx

yy A R(X2+z2)2

(68)
VT L 2- 2-)2 xz - 4p xz

zz T A R M (x2 + Pz 2 )2  (x 2  P42)2

VTL(2- ) (x 2- 2 z2 ) (x2- z 2)1

z - mAR (x 2 + P z 2 )2  (x 2 +Pz 2 )2

L-0
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PVT FZ(p2Z2 - 3x') (f_2_ ___ 3x_2)
L 2- M) L- 2p Z...

74A R L(x 2 + pz 2 ) 3  T (x 2 + 2 z2 )3
(68)2cont.

P__ _______ x(Pz-x) X(3 2z 2 _ x 2)]Iot
L 2-3M2 L 2T- 7T LRT (x 2 + P z2 )3  (X2 + fz2)s9

1 hLLAR

where

-2 lM2, 2

and [ !in) im
A = (1-m)(2- )- EL#T l-n) + M( .

R T LPTLP 2 p

The situation here is quite similar to the one at large

distances when V c* discussed in connection with Eqs. (46).

At small distances r -> 0, if v cR the stress and accelera-

r and 1 respectively, [Ref. 4], where
2 22

r = x + z2, while if v cR the stress and acceleration
1 1

increase as d and--- , respectively. This is again some-

what comparable to the resonance of a damped oscillator.

The various quantities defined by Eqs. (68) show symmetry

or antisymmetry with respect to x opposite to the behavior

of the equivalent quantities in the elastic solution for V/c R

[Ref. 43.

As in the case V = c*, there is no sudden change in be-

havior concerning decay and symmetry, depending on whether

V = cR or V / cR, but there is a gradual transition. This

transition in the vicinity of V = cR is not contained in

the result (68). It would require the retention of more than

the first significant term in the asymptotic expansion.
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VI. Discussion of Results

The asymptotic approximations obtained permit a discus-

sion of the differences between the response for elastic and

viscoelastic materials. Deferring discussion of the special

situation V = cR , the asymptotic approximations for points

at small distances are found to be simply the elastic sub-

sonic solutions, "small" or "large" to be interpreted in com-

parison with the products of the relaxation time T and the

typical wave velocities c , cs , c* and c* Using the
p p s

smallest and largest, respectively, the asymptotic approxi-

mations for "small" distances apply if

r << c*T (69)

while the asymptotic approximations for "large" distances

apply if

r >> OpT (70)

The differences between the elastic and viscoelastic

situations appear in the far field. These differences de-

pend on the relative values of the velocity V and the wave

velocities c* and c* Three cases, previously designated
p s

a , b and c , have been considered.

Case a V < c*
s

In this case the velocity of the load is less than the

propagation velocity of any plane wave in the material, and
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the effect of viscosity on the stresses and accelerations is

not radical. Consider, for example, the stresses as func-

tions of the distance r = x + z2 , but such that 2E is

constant, Fig. 6. In the elastic material the stresses are

equal to where c depends only on the value of z
r 'Z

In the viscoelastic material, excluding the special case
V = c* , the stresses may still be written c, but c has

cR r

a slight dependence on r For small values of r , c = c,

while for large values of r , c , Eqs. (39), approaches a

slightly different value. As an example, the stress u

along -2i- = 0 is shown in Fig. 7 as a function of z for
z

the specific set of parameters MT = 0.3, m = 0.5, K

At large distances the ratio C , in this example, approaches

the value 1.56. The value of this ratio depends on the value

of 2L and may be negative. Due to the fact that only thez

asymptotic values have been obtained, the details of the de-

pendence of c on r are not known.

Rmay be compared to theThe special situation, V = cR , myb oprdt h

response of a damped oscillator at resonance, where stresses

and displacements are much larger than at non-resonant fre-

quencies. Similarly, for this value of V the stresses in

the far field are much larger than for other values of V

1They no longer decay as -- but approach constant valuesr'

depending only on the ratio . The accelerations which
z

11
previously decayed as = now decay as - In addition,

r r
quantities previously symmetric with respect to the variable

x become antisymmetric and vice versa, as discussed in

connection with Eq. (46).
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Case b c >V> c*p s

In this case, where the velocity V exceeds the velocity

of shear waves for low frequencies, 0 , the far field

differs radically from the near field, and from the far field

in the elastic material. Before proceeding further, the

reader is reminded of the character of the supersonic elastic

solution, i.e. when V > cp > cs * In this case the stresses

are discontinuous. They vanish everywhere except at points

where has one of the values defining the P and S

fronts. At these points the stresses become infinite'. In

the elastic trans-sonic case, the stresses are the sum of a

smooth function ic(z and of one which is discontinuous

at the S front.

In the viscoelastic case under consideration the response

in the near field is again given by the subsonic elastic so-

lution, just as in Case a. The stresses are of the form
r

where c is a smooth function of . In the far field, how-z

ever, the stresses vanish everywhere, in first approximation,

except in the vicinity of 2= M* The presence of the
z T

viscous effects changes the response in the far field from a

smooth one, into one somewhat similar to the one in the elas-

tic trans-sonic case. In the viscoelastic material large yet

finite stresses occur within a small angle in the vicinity

of a critical direction defined by z - mT In essence, the
z T

1 While the stress becomes infinite, the integral of the
stress across either front is finite and independent of r

-34-



viscoelastic material focuses thc response in this critical

direction. The focusing is not sharp, but decays exponentially

as shown in Eq,. (54). Along the critical direction the

stresses, except a are of the form c As an example,

the stress azz along -- =  is shown in Fig. 8 as a func-

tion of z for the specific set of parameters 2 = 0.75
1

m =0.5, K
-3

Case c V > c* > c*

p s

In this case the far field response in the viscoelastic

material again differs radically from that in an elastic ma-

terial. The situation is somewhat similar to that in Case b,

but there is focusing in the two directions x= * and
z m

Xz - It is to be noted that Case c is only possible if

K 4+3M 4m this can occur only for a very small or
T

negative value of Poisson's ratio in combination with m <Ki.

Special Case V = cR , the Velocity of Rayleigh Waves

In this case the elastic solution does not exist at all.

The stresses increase in magnitude as V approaches cR

just as in the resonance of an undamped oscillator. The

presence of viscous effects leads to a finite response, Eqs.

(68). The behavior of the solution for small values of r

differs radically from the elastic solution for V / c R in

two respects. Stresses and accelerationsin the latter case

increase for r - 0 as - and -- , respectively, while
r rz 1 1

Eqs. (68) indicate an increase as and r- respectively.
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In the vicinity of r = 0 the response for V = cR is

therefore an order of magnitude larger than for V / CR

In addition, there is a change from symmetric to antisymmet-

tic behavior with respect to the variable x and vice versa.

The changes are quite similar to those encountered in the

far field when V = c*

The far field for V = cR can be obtained, depending

on the material properties, from Case a, b, or c. The fact

that V = cR does not create a special situation in the far

field, r
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